Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scenario-Based Safety Assessment Framework for Automated Vehicles (2112.09366v1)

Published 17 Dec 2021 in cs.RO

Abstract: Automated vehicles (AVs) are expected to increase traffic safety and traffic efficiency, among others by enabling flexible mobility-on-demand systems. This is particularly important in Singapore, being one of the world's most densely populated countries, which is why the Singaporean authorities are currently actively facilitating the deployment of AVs. As a consequence, however, the need arises for a formal AV road approval procedure. To this end, a safety assessment framework is proposed, which combines aspects of the standardized functional safety design methodology with a traffic scenario-based approach. The latter involves using driving data to extract AV-relevant traffic scenarios. The underlying approach is based on decomposition of scenarios into elementary events, subsequent scenario parametrization, and sampling of the estimated probability density functions of the scenario parameters to create test scenarios. The resulting test scenarios are subsequently employed for virtual testing in a simulation environment and physical testing on a proving ground and in real life. As a result, the proposed assessment pipeline thus provides statistically relevant and quantitative measures for the AV performance in a relatively short time frame due to the simulation-based approach. Ultimately, the proposed methodology provides authorities with a formal road approval procedure for AVs. In particular, the proposed methodology will support the Singaporean Land Transport Authority for road approval of AVs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.