Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of Physical Activity Level and Ambient Condition Thresholds for Respiratory Health using Smartphone Sensors (2112.09068v1)

Published 11 Dec 2021 in eess.SP and cs.LG

Abstract: While physical activity has been described as a primary prevention against chronic diseases, strenuous physical exertion under adverse ambient conditions has also been reported as a major contributor to exacerbation of chronic respiratory conditions. Maintaining a balance by monitoring the type and the level of physical activities of affected individuals, could help in reducing the cost and burden of managing respiratory ailments. This paper explores the potentiality of motion sensors in Smartphones to estimate physical activity thresholds that could trigger symptoms of exercise induced respiratory conditions (EiRCs). The focus is on the extraction of measurements from the embedded motion sensors to determine the activity level and the type of activity that is tolerable to individuals respiratory health. The calculations are based on the correlation between Signal Magnitude Area (SMA) and Energy Expenditure (EE). We also consider the effect of changes in the ambient conditions like temperature and humidity, as contributing factors to respiratory distress during physical exercise. Real time data collected from healthy individuals were used to demonstrate the potentiality of a mobile phone as tool to regulate the level of physical activities of individuals with EiRCs. We describe a practical situation where the experimental outcomes can be applied to promote good respiratory health.

Summary

We haven't generated a summary for this paper yet.