Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Families of singular Chern-Ricci flat metrics (2112.08993v2)

Published 16 Dec 2021 in math.CV and math.DG

Abstract: We prove uniform a priori estimates for degenerate complex Monge-Amp`ere equations on a family of hermitian varieties. This generalizes a theorem of Di Nezza-Guedj-Guenancia to hermitian contexts. The main result can be applied to study the uniform boundedness of Chern-Ricci flat potentials in conifold transitions.

Summary

We haven't generated a summary for this paper yet.