Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudo-Kähler geometry of properly convex projective structures on the torus (2112.08979v1)

Published 16 Dec 2021 in math.DG, math.RT, and math.SG

Abstract: In this paper we prove the existence of a pseudo-K\"ahler structure on the deformation space $\mathcal{B}_0(T2)$ of properly convex $\mathbb R\mathbb P2$-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of $\mathcal{B}_0(T2)$ with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichm\"uller space. We show that the $S1$-action on $\mathcal{B}_0(T2)$, given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the $\mathrm{SL}(2,\mathbb R)$-action over $\mathcal{B}_0(T2)$.

Summary

We haven't generated a summary for this paper yet.