Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deciding twin-width at most 4 is NP-complete (2112.08953v1)

Published 16 Dec 2021 in cs.CC, cs.DM, cs.DS, and math.CO

Abstract: We show that determining if an $n$-vertex graph has twin-width at most 4 is NP-complete, and requires time $2{\Omega(n/\log n)}$ unless the Exponential-Time Hypothesis fails. Along the way, we give an elementary proof that $n$-vertex graphs subdivided at least $2 \log n$ times have twin-width at most 4. We also show how to encode trigraphs $H$ (2-edge colored graphs involved in the definition of twin-width) into graphs $G$, in the sense that every $d$-sequence (sequence of vertex contractions witnessing that the twin-width is at most $d$) of $G$ inevitably creates $H$ as an induced subtrigraph, whereas there exists a partial $d$-sequence that actually goes from $G$ to $H$. We believe that these facts and their proofs can be of independent interest.

Citations (34)

Summary

We haven't generated a summary for this paper yet.