Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bottom Up Top Down Detection Transformers for Language Grounding in Images and Point Clouds (2112.08879v5)

Published 16 Dec 2021 in cs.CV and cs.CL

Abstract: Most models tasked to ground referential utterances in 2D and 3D scenes learn to select the referred object from a pool of object proposals provided by a pre-trained detector. This is limiting because an utterance may refer to visual entities at various levels of granularity, such as the chair, the leg of the chair, or the tip of the front leg of the chair, which may be missed by the detector. We propose a language grounding model that attends on the referential utterance and on the object proposal pool computed from a pre-trained detector to decode referenced objects with a detection head, without selecting them from the pool. In this way, it is helped by powerful pre-trained object detectors without being restricted by their misses. We call our model Bottom Up Top Down DEtection TRansformers (BUTD-DETR) because it uses both language guidance (top down) and objectness guidance (bottom-up) to ground referential utterances in images and point clouds. Moreover, BUTD-DETR casts object detection as referential grounding and uses object labels as language prompts to be grounded in the visual scene, augmenting supervision for the referential grounding task in this way. The proposed model sets a new state-of-the-art across popular 3D language grounding benchmarks with significant performance gains over previous 3D approaches (12.6% on SR3D, 11.6% on NR3D and 6.3% on ScanRefer). When applied in 2D images, it performs on par with the previous state of the art. We ablate the design choices of our model and quantify their contribution to performance. Our code and checkpoints can be found at the project website https://butd-detr.github.io.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ayush Jain (49 papers)
  2. Nikolaos Gkanatsios (9 papers)
  3. Ishita Mediratta (5 papers)
  4. Katerina Fragkiadaki (61 papers)
Citations (79)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com