Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GIMIRec: Global Interaction Information Aware Multi-Interest Framework for Sequential Recommendation (2112.08717v1)

Published 16 Dec 2021 in cs.IR and cs.AI

Abstract: Sequential recommendation based on multi-interest framework models the user's recent interaction sequence into multiple different interest vectors, since a single low-dimensional vector cannot fully represent the diversity of user interests. However, most existing models only intercept users' recent interaction behaviors as training data, discarding a large amount of historical interaction sequences. This may raise two issues. On the one hand, data reflecting multiple interests of users is missing; on the other hand, the co-occurrence between items in historical user-item interactions is not fully explored. To tackle the two issues, this paper proposes a novel sequential recommendation model called "Global Interaction Aware Multi-Interest Framework for Sequential Recommendation (GIMIRec)". Specifically, a global context extraction module is firstly proposed without introducing any external information, which calculates a weighted co-occurrence matrix based on the constrained co-occurrence number of each item pair and their time interval from the historical interaction sequences of all users and then obtains the global context embedding of each item by using a simplified graph convolution. Secondly, the time interval of each item pair in the recent interaction sequence of each user is captured and combined with the global context item embedding to get the personalized item embedding. Finally, a self-attention based multi-interest framework is applied to learn the diverse interests of users for sequential recommendation. Extensive experiments on the three real-world datasets of Amazon-Books, Taobao-Buy and Amazon-Hybrid show that the performance of GIMIRec on the Recall, NDCG and Hit Rate indicators is significantly superior to that of the state-of-the-art methods. Moreover, the proposed global context extraction module can be easily transplanted to most sequential recommendation models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jie Zhang (847 papers)
  2. Ke-Jia Chen (9 papers)
  3. Jingqiang Chen (5 papers)

Summary

We haven't generated a summary for this paper yet.