Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Helmholtz equation and non-singular boundary elements applied to multi-disciplinary physical problems (2112.08693v4)

Published 16 Dec 2021 in math.NA, cs.NA, physics.class-ph, physics.comp-ph, and physics.flu-dyn

Abstract: The famous scientist Hermann von Helmholtz was born 200 years ago. Many complex physical wave phenomena in engineering can effectively be described using one or a set of equations named after him: the Helmholtz equation. Although this has been known for a long time from a theoretical point of view, the actual numerical implementation has often been hindered by divergence free and/or curl free constraints. There is further a need for a numerical method that is accurate, reliable and takes into account radiation conditions at infinity. The classical boundary element method (BEM) satisfies the last condition, yet one has to deal with singularities in the implementation. We review here how a recently developed singularity-free three-dimensional (3D) boundary element framework with superior accuracy can be used to tackle such problems only using one or a few Helmholtz equations with higher order (quadratic) elements which can tackle complex curved shapes. Examples are given for acoustics (a Helmholtz resonator among others) and electromagnetic scattering.

Citations (4)

Summary

We haven't generated a summary for this paper yet.