Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Twitter-COMMs: Detecting Climate, COVID, and Military Multimodal Misinformation (2112.08594v2)

Published 16 Dec 2021 in cs.CV and cs.CL

Abstract: Detecting out-of-context media, such as "mis-captioned" images on Twitter, is a relevant problem, especially in domains of high public significance. In this work we aim to develop defenses against such misinformation for the topics of Climate Change, COVID-19, and Military Vehicles. We first present a large-scale multimodal dataset with over 884k tweets relevant to these topics. Next, we propose a detection method, based on the state-of-the-art CLIP model, that leverages automatically generated hard image-text mismatches. While this approach works well on our automatically constructed out-of-context tweets, we aim to validate its usefulness on data representative of the real world. Thus, we test it on a set of human-generated fakes created by mimicking in-the-wild misinformation. We achieve an 11% detection improvement in a high precision regime over a strong baseline. Finally, we share insights about our best model design and analyze the challenges of this emerging threat.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Giscard Biamby (8 papers)
  2. Grace Luo (11 papers)
  3. Trevor Darrell (324 papers)
  4. Anna Rohrbach (53 papers)
Citations (18)