Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Content Extraction for Poster Generation of Scientific Papers (2112.08550v1)

Published 16 Dec 2021 in cs.CL

Abstract: The problem of poster generation for scientific papers is under-investigated. Posters often present the most important information of papers, and the task can be considered as a special form of document summarization. Previous studies focus mainly on poster layout and panel composition, while neglecting the importance of content extraction. Besides, their datasets are not publicly available, which hinders further research. In this paper, we construct a benchmark dataset from scratch for this task. Then we propose a three-step framework to tackle this task and focus on the content extraction step in this study. To get both textual and visual elements of a poster panel, a neural extractive model is proposed to extract text, figures and tables of a paper section simultaneously. We conduct experiments on the dataset and also perform ablation study. Results demonstrate the efficacy of our proposed model. The dataset and code will be released.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sheng Xu (106 papers)
  2. Xiaojun Wan (99 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.