Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of causal ancestral graphs for time series with latent confounders (2112.08417v2)

Published 15 Dec 2021 in stat.ME, cs.AI, cs.LG, and stat.ML

Abstract: In this paper, we introduce a novel class of graphical models for representing time lag specific causal relationships and independencies of multivariate time series with unobserved confounders. We completely characterize these graphs and show that they constitute proper subsets of the currently employed model classes. As we show, from the novel graphs one can thus draw stronger causal inferences -- without additional assumptions. We further introduce a graphical representation of Markov equivalence classes of the novel graphs. This graphical representation contains more causal knowledge than what current state-of-the-art causal discovery algorithms learn.

Citations (7)

Summary

We haven't generated a summary for this paper yet.