Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ten years of image analysis and machine learning competitions in dementia (2112.07922v2)

Published 15 Dec 2021 in cs.LG

Abstract: Machine learning methods exploiting multi-parametric biomarkers, especially based on neuroimaging, have huge potential to improve early diagnosis of dementia and to predict which individuals are at-risk of developing dementia. To benchmark algorithms in the field of machine learning and neuroimaging in dementia and assess their potential for use in clinical practice and clinical trials, seven grand challenges have been organized in the last decade. The seven grand challenges addressed questions related to screening, clinical status estimation, prediction and monitoring in (pre-clinical) dementia. There was little overlap in clinical questions, tasks and performance metrics. Whereas this aids providing insight on a broad range of questions, it also limits the validation of results across challenges. The validation process itself was mostly comparable between challenges, using similar methods for ensuring objective comparison, uncertainty estimation and statistical testing. In general, winning algorithms performed rigorous data preprocessing and combined a wide range of input features. Despite high state-of-the-art performances, most of the methods evaluated by the challenges are not clinically used. To increase impact, future challenges could pay more attention to statistical analysis of which factors relate to higher performance, to clinical questions beyond Alzheimer's disease, and to using testing data beyond the Alzheimer's Disease Neuroimaging Initiative. Grand challenges would be an ideal venue for assessing the generalizability of algorithm performance to unseen data of other cohorts. Key for increasing impact in this way are larger testing data sizes, which could be reached by sharing algorithms rather than data to exploit data that cannot be shared.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Esther E. Bron (19 papers)
  2. Stefan Klein (39 papers)
  3. Annika Reinke (29 papers)
  4. Janne M. Papma (3 papers)
  5. Lena Maier-Hein (82 papers)
  6. Daniel C. Alexander (81 papers)
  7. Neil P. Oxtoby (27 papers)
Citations (13)