Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Depth Completion with Uncertainty-Driven Loss Functions (2112.07895v2)

Published 15 Dec 2021 in cs.CV and cs.LG

Abstract: Recovering a dense depth image from sparse LiDAR scans is a challenging task. Despite the popularity of color-guided methods for sparse-to-dense depth completion, they treated pixels equally during optimization, ignoring the uneven distribution characteristics in the sparse depth map and the accumulated outliers in the synthesized ground truth. In this work, we introduce uncertainty-driven loss functions to improve the robustness of depth completion and handle the uncertainty in depth completion. Specifically, we propose an explicit uncertainty formulation for robust depth completion with Jeffrey's prior. A parametric uncertain-driven loss is introduced and translated to new loss functions that are robust to noisy or missing data. Meanwhile, we propose a multiscale joint prediction model that can simultaneously predict depth and uncertainty maps. The estimated uncertainty map is also used to perform adaptive prediction on the pixels with high uncertainty, leading to a residual map for refining the completion results. Our method has been tested on KITTI Depth Completion Benchmark and achieved the state-of-the-art robustness performance in terms of MAE, IMAE, and IRMSE metrics.

Citations (41)

Summary

We haven't generated a summary for this paper yet.