Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pruning Coherent Integrated Photonic Neural Networks Using the Lottery Ticket Hypothesis (2112.07485v1)

Published 14 Dec 2021 in cs.ET, cs.LG, and physics.optics

Abstract: Singular-value-decomposition-based coherent integrated photonic neural networks (SC-IPNNs) have a large footprint, suffer from high static power consumption for training and inference, and cannot be pruned using conventional DNN pruning techniques. We leverage the lottery ticket hypothesis to propose the first hardware-aware pruning method for SC-IPNNs that alleviates these challenges by minimizing the number of weight parameters. We prune a multi-layer perceptron-based SC-IPNN and show that up to 89% of the phase angles, which correspond to weight parameters in SC-IPNNs, can be pruned with a negligible accuracy loss (smaller than 5%) while reducing the static power consumption by up to 86%.

Citations (9)

Summary

We haven't generated a summary for this paper yet.