Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Modal Perception Attention Network with Self-Supervised Learning for Audio-Visual Speaker Tracking (2112.07423v1)

Published 14 Dec 2021 in cs.CV

Abstract: Multi-modal fusion is proven to be an effective method to improve the accuracy and robustness of speaker tracking, especially in complex scenarios. However, how to combine the heterogeneous information and exploit the complementarity of multi-modal signals remains a challenging issue. In this paper, we propose a novel Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Specifically, a novel acoustic map based on spatial-temporal Global Coherence Field (stGCF) is first constructed for heterogeneous signal fusion, which employs a camera model to map audio cues to the localization space consistent with the visual cues. Then a multi-modal perception attention network is introduced to derive the perception weights that measure the reliability and effectiveness of intermittent audio and video streams disturbed by noise. Moreover, a unique cross-modal self-supervised learning method is presented to model the confidence of audio and visual observations by leveraging the complementarity and consistency between different modalities. Experimental results show that the proposed MPT achieves 98.6% and 78.3% tracking accuracy on the standard and occluded datasets, respectively, which demonstrates its robustness under adverse conditions and outperforms the current state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yidi Li (10 papers)
  2. Hong Liu (395 papers)
  3. Hao Tang (379 papers)
Citations (16)