Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Margin Calibration for Long-Tailed Visual Recognition (2112.07225v5)

Published 14 Dec 2021 in cs.CV, cs.AI, and cs.LG

Abstract: The long-tailed class distribution in visual recognition tasks poses great challenges for neural networks on how to handle the biased predictions between head and tail classes, i.e., the model tends to classify tail classes as head classes. While existing research focused on data resampling and loss function engineering, in this paper, we take a different perspective: the classification margins. We study the relationship between the margins and logits (classification scores) and empirically observe the biased margins and the biased logits are positively correlated. We propose MARC, a simple yet effective MARgin Calibration function to dynamically calibrate the biased margins for unbiased logits. We validate MARC through extensive experiments on common long-tailed benchmarks including CIFAR-LT, ImageNet-LT, Places-LT, and iNaturalist-LT. Experimental results demonstrate that our MARC achieves favorable results on these benchmarks. In addition, MARC is extremely easy to implement with just three lines of code. We hope this simple method will motivate people to rethink the biased margins and biased logits in long-tailed visual recognition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yidong Wang (43 papers)
  2. Bowen Zhang (161 papers)
  3. Wenxin Hou (11 papers)
  4. Zhen Wu (79 papers)
  5. Jindong Wang (150 papers)
  6. Takahiro Shinozaki (13 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.