Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Event-guided Deblurring of Unknown Exposure Time Videos (2112.06988v3)

Published 13 Dec 2021 in cs.CV

Abstract: Motion deblurring is a highly ill-posed problem due to the loss of motion information in the blur degradation process. Since event cameras can capture apparent motion with a high temporal resolution, several attempts have explored the potential of events for guiding deblurring. These methods generally assume that the exposure time is the same as the reciprocal of the video frame rate. However, this is not true in real situations, and the exposure time might be unknown and dynamically varies depending on the video shooting environment(e.g., illumination condition). In this paper, we address the event-guided motion deblurring assuming dynamically variable unknown exposure time of the frame-based camera. To this end, we first derive a new formulation for event-guided motion deblurring by considering the exposure and readout time in the video frame acquisition process. We then propose a novel end-to-end learning framework for event-guided motion deblurring. In particular, we design a novel Exposure Time-based Event Selection(ETES) module to selectively use event features by estimating the cross-modal correlation between the features from blurred frames and the events. Moreover, we propose a feature fusion module to fuse the selected features from events and blur frames effectively. We conduct extensive experiments on various datasets and demonstrate that our method achieves state-of-the-art performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Taewoo Kim (34 papers)
  2. Jeongmin Lee (11 papers)
  3. Lin Wang (403 papers)
  4. Kuk-Jin Yoon (63 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.