Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A flux-vector splitting scheme for the shallow water equations extended to high-order on unstructured meshes (2112.06902v1)

Published 13 Dec 2021 in math.NA, cs.NA, and physics.flu-dyn

Abstract: We present an advection-pressure flux-vector splitting method for the one and two- dimensional shallow water equations following the approach first proposed by Toro and V\'azquez for the compressible Euler equations. The resulting first-order schemes turn out to be exceedingly simple, with accuracy and robustness comparable to that of the sophisticated Godunov upwind method used in conjunction with complete non- linear Riemann solvers. The technique splits the full system into two subsystems, namely an advection system and a pressure system. The sought numerical flux results from fluxes for each of the subsystems. The basic methodology, extended on 2D unstructured meshes, constitutes the building block for the construction of numerical schemes of very high order of accuracy following the ADER approach. The presented numerical schemes are systematically assessed on a carefully selected suite of test problems with reference solutions, in one and two space dimensions.The applicabil- ity of the schemes is illustrated through simulations of tsunami wave propagation in the Pacific Ocean.

Citations (8)

Summary

We haven't generated a summary for this paper yet.