Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Khmer Text Classification Using Word Embedding and Neural Networks (2112.06748v1)

Published 13 Dec 2021 in cs.CL

Abstract: Text classification is one of the fundamental tasks in natural language processing to label an open-ended text and is useful for various applications such as sentiment analysis. In this paper, we discuss various classification approaches for Khmer text, ranging from a classical TF-IDF algorithm with support vector machine classifier to modern word embedding-based neural network classifiers including linear layer model, recurrent neural network and convolutional neural network. A Khmer word embedding model is trained on a 30-million-Khmer-word corpus to construct word vector representations that are used to train three different neural network classifiers. We evaluate the performance of different approaches on a news article dataset for both multi-class and multi-label text classification tasks. The result suggests that neural network classifiers using a word embedding model consistently outperform the traditional classifier using TF-IDF. The recurrent neural network classifier provides a slightly better result compared to the convolutional network and the linear layer network.

Citations (3)

Summary

We haven't generated a summary for this paper yet.