Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Satake equivalence for Hodge modules on affine Grassmannians (2112.06747v2)

Published 13 Dec 2021 in math.AG and math.RT

Abstract: For a reductive group $G$ we equip the category of $G_\mathcal{O}$-equivariant polarizable pure Hodge modules on the affine Grassmannian $\mathrm{Gr}_G$ with a structure of neutral Tannakian category. We show that it is equivalent to a twisted tensor product of the category of representations of the Langlands dual group and the category of pure polarizable Hodge structures.

Summary

We haven't generated a summary for this paper yet.