Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error analysis for parabolic optimal control problems with measure data in a nonconvex polygonal domain (2112.06432v2)

Published 13 Dec 2021 in math.NA and cs.NA

Abstract: This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain. Such problems usually possess low regularity in the state variable due to the presence of measure data and the nonconvex nature of the domain. The low regularity of the solution allows the finite element approximations to converge at lower orders. We prove the existence, uniqueness and regularity results for the solution to the control problem satisfying the first order optimality condition. For our error analysis we have used piecewise linear elements for the approximation of the state and co-state variables, whereas piecewise constant functions are employed to approximate the control variable. The temporal discretization is based on the implicit Euler scheme. We derive both a priori and a posteriori error bounds for the state, control and co-state variables. Numerical experiments are performed to validate the theoretical rates of convergence.

Summary

We haven't generated a summary for this paper yet.