Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissipative quantum dynamics, phase transitions and non-Hermitian random matrices (2112.05765v1)

Published 10 Dec 2021 in quant-ph, cond-mat.stat-mech, and nlin.CD

Abstract: We explore the connections between dissipative quantum phase transitions and non-Hermitian random matrix theory. For this, we work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems. We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character on the two sides of the critical point. We follow the distribution of the spacings of the complex Liouvillian eigenvalues across the critical point. In the normal and superradiant phases, the distributions are $2D$ Poisson and that of the Ginibre Unitary random matrix ensemble, respectively. Our results are corroborated by computing a recently introduced complex-plane generalization of the consecutive level-spacing ratio distribution. Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.

Summary

We haven't generated a summary for this paper yet.