Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-structured tensor optimization for nonlinear density control and mean field games (2112.05645v3)

Published 10 Dec 2021 in math.OC, cs.SY, and eess.SY

Abstract: In this work we develop a numerical method for solving a type of convex graph-structured tensor optimization problems. This type of problems, which can be seen as a generalization of multi-marginal optimal transport problems with graph-structured costs, appear in many applications. Examples are unbalanced optimal transport and multi-species potential mean field games, where the latter is a class of nonlinear density control problems. The method we develop is based on coordinate ascent in a Lagrangian dual, and under mild assumptions we prove that the algorithm converges globally. Moreover, under a set of stricter assumptions, the algorithm converges R-linearly. To perform the coordinate ascent steps one has to compute projections of the tensor, and doing so by brute force is in general not computationally feasible. Nevertheless, for certain graph structures it is possible to derive efficient methods for computing these projections, and here we specifically consider the graph structure that occurs in multi-species potential mean field games. We also illustrate the methodology on a numerical example from this problem class.

Citations (5)

Summary

We haven't generated a summary for this paper yet.