Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Diagnosis of Deep Monocular Depth Estimation Models (2112.05533v1)

Published 15 Nov 2021 in cs.CV and cs.RO

Abstract: Estimating depth from a monocular image is an ill-posed problem: when the camera projects a 3D scene onto a 2D plane, depth information is inherently and permanently lost. Nevertheless, recent work has shown impressive results in estimating 3D structure from 2D images using deep learning. In this paper, we put on an introspective hat and analyze state-of-the-art monocular depth estimation models in indoor scenes to understand these models' limitations and error patterns. To address errors in depth estimation, we introduce a novel Depth Error Detection Network (DEDN) that spatially identifies erroneous depth predictions in the monocular depth estimation models. By experimenting with multiple state-of-the-art monocular indoor depth estimation models on multiple datasets, we show that our proposed depth error detection network can identify a significant number of errors in the predicted depth maps. Our module is flexible and can be readily plugged into any monocular depth prediction network to help diagnose its results. Additionally, we propose a simple yet effective Depth Error Correction Network (DECN) that iteratively corrects errors based on our initial error diagnosis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.