Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Fundamental Limits of Interval Arithmetic for Neural Networks (2112.05235v1)

Published 9 Dec 2021 in cs.LG and cs.AI

Abstract: Interval analysis (or interval bound propagation, IBP) is a popular technique for verifying and training provably robust deep neural networks, a fundamental challenge in the area of reliable machine learning. However, despite substantial efforts, progress on addressing this key challenge has stagnated, calling into question whether interval arithmetic is a viable path forward. In this paper we present two fundamental results on the limitations of interval arithmetic for analyzing neural networks. Our main impossibility theorem states that for any neural network classifying just three points, there is a valid specification over these points that interval analysis can not prove. Further, in the restricted case of one-hidden-layer neural networks we show a stronger impossibility result: given any radius $\alpha < 1$, there is a set of $O(\alpha{-1})$ points with robust radius $\alpha$, separated by distance $2$, that no one-hidden-layer network can be proven to classify robustly via interval analysis.

Citations (6)

Summary

We haven't generated a summary for this paper yet.