Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Periodic waves of the modified KdV equation as minimizers of a new variational problem (2112.05231v1)

Published 9 Dec 2021 in nlin.SI, math-ph, math.AP, math.DS, math.MP, and nlin.PS

Abstract: Periodic waves of the modified Korteweg-de Vries (mKdV) equation are identified in the context of a new variational problem with two constraints. The advantage of this variational problem is that its non-degenerate local minimizers are stable in the time evolution of the mKdV equation, whereas the saddle points are unstable. We explore the analytical representation of periodic waves given by Jacobi elliptic functions and compute numerically critical points of the constrained variational problem. A broken pitchfork bifurcation of three smooth solution families is found. Two families represent (stable) minimizers of the constrained variational problem and one family represents (unstable) saddle points.

Summary

We haven't generated a summary for this paper yet.