Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot NLU with Vector Projection Distance and Abstract Triangular CRF (2112.04999v1)

Published 9 Dec 2021 in cs.CL

Abstract: Data sparsity problem is a key challenge of Natural Language Understanding (NLU), especially for a new target domain. By training an NLU model in source domains and applying the model to an arbitrary target domain directly (even without fine-tuning), few-shot NLU becomes crucial to mitigate the data scarcity issue. In this paper, we propose to improve prototypical networks with vector projection distance and abstract triangular Conditional Random Field (CRF) for the few-shot NLU. The vector projection distance exploits projections of contextual word embeddings on label vectors as word-label similarities, which is equivalent to a normalized linear model. The abstract triangular CRF learns domain-agnostic label transitions for joint intent classification and slot filling tasks. Extensive experiments demonstrate that our proposed methods can significantly surpass strong baselines. Specifically, our approach can achieve a new state-of-the-art on two few-shot NLU benchmarks (Few-Joint and SNIPS) in Chinese and English without fine-tuning on target domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Su Zhu (29 papers)
  2. Lu Chen (245 papers)
  3. Ruisheng Cao (24 papers)
  4. Zhi Chen (235 papers)
  5. Qingliang Miao (2 papers)
  6. Kai Yu (202 papers)
Citations (1)