Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Image-to-Text and Text-to-Image Synthesis (2112.04928v1)

Published 9 Dec 2021 in cs.CV, cs.CL, and cs.LG

Abstract: A comprehensive understanding of vision and language and their interrelation are crucial to realize the underlying similarities and differences between these modalities and to learn more generalized, meaningful representations. In recent years, most of the works related to Text-to-Image synthesis and Image-to-Text generation, focused on supervised generative deep architectures to solve the problems, where very little interest was placed on learning the similarities between the embedding spaces across modalities. In this paper, we propose a novel self-supervised deep learning based approach towards learning the cross-modal embedding spaces; for both image to text and text to image generations. In our approach, we first obtain dense vector representations of images using StackGAN-based autoencoder model and also dense vector representations on sentence-level utilizing LSTM based text-autoencoder; then we study the mapping from embedding space of one modality to embedding space of the other modality utilizing GAN and maximum mean discrepancy based generative networks. We, also demonstrate that our model learns to generate textual description from image data as well as images from textual data both qualitatively and quantitatively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anindya Sundar Das (3 papers)
  2. Sriparna Saha (48 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.