Papers
Topics
Authors
Recent
2000 character limit reached

Regularized Modal Regression on Markov-dependent Observations: A Theoretical Assessment

Published 9 Dec 2021 in stat.ML and cs.LG | (2112.04779v2)

Abstract: Modal regression, a widely used regression protocol, has been extensively investigated in statistical and machine learning communities due to its robustness to outliers and heavy-tailed noises. Understanding modal regression's theoretical behavior can be fundamental in learning theory. Despite significant progress in characterizing its statistical property, the majority of the results are based on the assumption that samples are independent and identical distributed (i.i.d.), which is too restrictive for real-world applications. This paper concerns the statistical property of regularized modal regression (RMR) within an important dependence structure - Markov dependent. Specifically, we establish the upper bound for RMR estimator under moderate conditions and give an explicit learning rate. Our results show that the Markov dependence impacts on the generalization error in the way that sample size would be discounted by a multiplicative factor depending on the spectral gap of underlying Markov chain. This result shed a new light on characterizing the theoretical underpinning for robust regression.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.