Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Player Modeling using Behavioral Signals in Competitive Online Games (2112.04379v1)

Published 29 Nov 2021 in cs.GT and cs.LG

Abstract: Competitive online games use rating systems to match players with similar skills to ensure a satisfying experience for players. In this paper, we focus on the importance of addressing different aspects of playing behavior when modeling players for creating match-ups. To this end, we engineer several behavioral features from a dataset of over 75,000 battle royale matches and create player models based on the retrieved features. We then use the created models to predict ranks for different groups of players in the data. The predicted ranks are compared to those of three popular rating systems. Our results show the superiority of simple behavioral models over mainstream rating systems. Some behavioral features provided accurate predictions for all groups of players while others proved useful for certain groups of players. The results of this study highlight the necessity of considering different aspects of the player's behavior such as goals, strategy, and expertise when making assignments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.