Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transformaly -- Two (Feature Spaces) Are Better Than One (2112.04185v2)

Published 8 Dec 2021 in cs.CV and cs.LG

Abstract: Anomaly detection is a well-established research area that seeks to identify samples outside of a predetermined distribution. An anomaly detection pipeline is comprised of two main stages: (1) feature extraction and (2) normality score assignment. Recent papers used pre-trained networks for feature extraction achieving state-of-the-art results. However, the use of pre-trained networks does not fully-utilize the normal samples that are available at train time. This paper suggests taking advantage of this information by using teacher-student training. In our setting, a pretrained teacher network is used to train a student network on the normal training samples. Since the student network is trained only on normal samples, it is expected to deviate from the teacher network in abnormal cases. This difference can serve as a complementary representation to the pre-trained feature vector. Our method -- Transformaly -- exploits a pre-trained Vision Transformer (ViT) to extract both feature vectors: the pre-trained (agnostic) features and the teacher-student (fine-tuned) features. We report state-of-the-art AUROC results in both the common unimodal setting, where one class is considered normal and the rest are considered abnormal, and the multimodal setting, where all classes but one are considered normal, and just one class is considered abnormal. The code is available at https://github.com/MatanCohen1/Transformaly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Matan Jacob Cohen (1 paper)
  2. Shai Avidan (46 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.