Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Attentional Network for Semantic Segmentation (2112.04108v4)

Published 8 Dec 2021 in cs.CV

Abstract: Recent non-local self-attention methods have proven to be effective in capturing long-range dependencies for semantic segmentation. These methods usually form a similarity map of RC*C (by compressing spatial dimensions) or RHW*HW (by compressing channels) to describe the feature relations along either channel or spatial dimensions, where C is the number of channels, H and W are the spatial dimensions of the input feature map. However, such practices tend to condense feature dependencies along the other dimensions,hence causing attention missing, which might lead to inferior results for small/thin categories or inconsistent segmentation inside large objects. To address this problem, we propose anew approach, namely Fully Attentional Network (FLANet),to encode both spatial and channel attentions in a single similarity map while maintaining high computational efficiency. Specifically, for each channel map, our FLANet can harvest feature responses from all other channel maps, and the associated spatial positions as well, through a novel fully attentional module. Our new method has achieved state-of-the-art performance on three challenging semantic segmentation datasets,i.e., 83.6%, 46.99%, and 88.5% on the Cityscapes test set,the ADE20K validation set, and the PASCAL VOC test set,respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Qi Song (73 papers)
  2. Jie Li (553 papers)
  3. Chenghong Li (8 papers)
  4. Hao Guo (172 papers)
  5. Rui Huang (128 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.