Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Select the Next Reasonable Mention for Entity Linking (2112.04104v1)

Published 8 Dec 2021 in cs.CL

Abstract: Entity linking aims to establish a link between entity mentions in a document and the corresponding entities in knowledge graphs (KGs). Previous work has shown the effectiveness of global coherence for entity linking. However, most of the existing global linking methods based on sequential decisions focus on how to utilize previously linked entities to enhance the later decisions. In those methods, the order of mention is fixed, making the model unable to adjust the subsequent linking targets according to the previously linked results, which will cause the previous information to be unreasonably utilized. To address the problem, we propose a novel model, called DyMen, to dynamically adjust the subsequent linking target based on the previously linked entities via reinforcement learning, enabling the model to select a link target that can fully use previously linked information. We sample mention by sliding window to reduce the action sampling space of reinforcement learning and maintain the semantic coherence of mention. Experiments conducted on several benchmark datasets have shown the effectiveness of the proposed model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jian Sun (416 papers)
  2. Yu Zhou (335 papers)
  3. Chengqing Zong (65 papers)

Summary

We haven't generated a summary for this paper yet.