Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear mixed Jordan triple *-derivations on *-algebras (2112.04103v1)

Published 8 Dec 2021 in math.OA

Abstract: Let $\mathcal {A}$ be a unital $\ast$-algebra. For $A, B\in\mathcal{A}$, define by $[A, B]{*}=AB-BA{\ast}$ and $A\bullet B=AB+BA{\ast}$ the new products of $A$ and $B$. In this paper, under some mild conditions on $\mathcal {A}$, it is shown that a map $\Phi:\mathcal {A}\rightarrow \mathcal {A}$ satisfies $\Phi([A\bullet B, C]{})=[\Phi(A)\bullet B, C]_{}+[A\bullet \Phi(B), C]{*}+[A\bullet B, \Phi(C)]{}$ for all $A, B,C\in\mathcal {A}$ if and only if $\Phi$ is an additive $-$derivation. In particular, we apply the above result to prime $\ast$-algebras, von Neumann algebras with no central summands of type $I_1$, factor von Neumann algebras and standard operator algebras.

Summary

We haven't generated a summary for this paper yet.