Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient labeling algorithms for adjacent quadratic shortest paths (2112.04045v1)

Published 7 Dec 2021 in math.OC and cs.DM

Abstract: In this article, we study the Adjacent Quadratic Shortest Path Problem (AQSPP), which consists in finding the shortest path on a directed graph when its total weight component also includes the impact of consecutive arcs. We provide a formal description of the AQSPP and propose an extension of Dijkstra's algorithm (that we denote aqD) for solving AQSPPs in polynomial-time and provide a proof for its correctness under some mild assumptions. Furthermore, we introduce an adjacent quadratic A* algorithm (that we denote aqA*) with a backward search for cost-to-go estimation to speed up the search. We assess the performance of both algorithms by comparing their relative performance with benchmark algorithms from the scientific literature and carry out a thorough collection of sensitivity analysis of the methods on a set of problem characteristics using randomly generated graphs. Numerical results suggest that: (i) aqA* outperforms all other algorithms, with a performance being about 75 times faster than aqD and the fastest alternative; (ii) the proposed solution procedures do not lose efficiency when the magnitude of quadratic costs vary; (iii) aqA* and aqD are fastest on random graph instances, compared with benchmark algorithms from scientific literature. We conclude the numerical experiments by presenting a stress test of the AQSPP in the context of real grid graph instances, with sizes up to $16 \times 106$ nodes, $64 \times 106$ arcs, and $109$ quadratic arcs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.