Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some Intrinsic Characterizations of Besov-Triebel-Lizorkin-Morrey-type Spaces on Lipschitz Domains (2112.03996v5)

Published 7 Dec 2021 in math.FA and math.CA

Abstract: We give Littlewood-Paley type characterizations for Besov-Triebel-Lizorkin-type spaces $\mathscr B_{pq}{s\tau},\mathscr F_{pq}{s\tau}$ and Besov-Morrey spaces $\mathcal N_{uqp}s$ on a special Lipschitz domain $\Omega\subset\mathbb Rn$: for a suitable sequence of Schwartz functions $(\phi_j){j=0}\infty$, $|f|{\mathscr B_{pq}{s\tau}(\Omega)}\approx\sup_{P\text{ dyadic cubes}}|P|{-\tau}|(2{js}\phi_j\ast f){j=\log_2\ell(P)}\infty|{\ellq(Lp(\Omega\cap P))};$ $|f|{\mathscr F{pq}{s\tau}(\Omega)}\approx\sup_{P\text{ dyadic cubes}}|P|{-\tau}|(2{js}\phi_j\ast f){j=\log_2\ell(P)}\infty|{Lp(\Omega\cap P;\ellq)};$ $|f|{\mathcal N{uqp}{s}(\Omega)}\approx\big|\big(\sup_{P\text{ dyadic cubes}}|P|{\frac1u-\frac1p}\cdot 2{js}|\phi_j\ast f|{Lp(\Omega\cap P)}\big){j=0}\infty\big|_{\ellq}.$ We also show that $|f|{\mathscr B{pq}{s\tau}(\Omega)}$, $|f|{\mathscr F{pq}{s\tau}(\Omega)}$ and $|f|{\mathcal N{uqp}{s}(\Omega)}$ have equivalent (quasi-)norms via derivatives: for $\mathscr X\bullet\in{\mathscr B_{pq}{\bullet,\tau},\mathscr F_{pq}{\bullet,\tau},\mathcal N_{uqp}\bullet}$, we have $|f|{\mathscr Xs(\Omega)}\approx\sum{|\alpha|\le m}|\partial\alpha f|{\mathscr X{s-m}(\Omega)}$. In particular $|f|{\mathscr F_{\infty q}s(\Omega)}\approx\sum_{|\alpha|\le m}|\partial\alpha f|{\mathscr F{\infty q}{s-m}(\Omega)}\approx\sup_{P}|P|{-n/q}|(2{js}\phi_j\ast f){j=\log_2\ell(P)}\infty|{\ellq(Lq(\Omega\cap P))}$ for all $0<q<\infty$.

Summary

We haven't generated a summary for this paper yet.