Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vehicle trajectory prediction works, but not everywhere (2112.03909v2)

Published 7 Dec 2021 in cs.CV

Abstract: Vehicle trajectory prediction is nowadays a fundamental pillar of self-driving cars. Both the industry and research communities have acknowledged the need for such a pillar by providing public benchmarks. While state-of-the-art methods are impressive, i.e., they have no off-road prediction, their generalization to cities outside of the benchmark remains unexplored. In this work, we show that those methods do not generalize to new scenes. We present a method that automatically generates realistic scenes causing state-of-the-art models to go off-road. We frame the problem through the lens of adversarial scene generation. The method is a simple yet effective generative model based on atomic scene generation functions along with physical constraints. Our experiments show that more than 60% of existing scenes from the current benchmarks can be modified in a way to make prediction methods fail (i.e., predicting off-road). We further show that the generated scenes (i) are realistic since they do exist in the real world, and (ii) can be used to make existing models more robust, yielding 30-40 reductions in the off-road rate. The code is available online: https://s-attack.github.io/.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com