The hidden symmetry of Kontsevich's graph flows on the spaces of Nambu-determinant Poisson brackets (2112.03897v3)
Abstract: Kontsevich's graph flows are -- universally for all finite-dimensional affine Poisson manifolds -- infinitesimal symmetries of the spaces of Poisson brackets. We show that the previously known tetrahedral flow and the recently obtained pentagon-wheel flow preserve the class of Nambu-determinant Poisson bi-vectors $P=[![ \varrho(\boldsymbol{x})\,\partial_x\wedge\partial_y\wedge\partial_z,a]!]$ on $\mathbb{R}3\ni\boldsymbol{x}=(x,y,z)$ and $P=[![ [![\varrho(\boldsymbol{y})\,\partial_{x1}\wedge\ldots\wedge\partial_{x4},a_1]!],a_2]!]$ on $\mathbb{R}4\ni\boldsymbol{y}$, including the general case $\varrho \not\equiv 1$. We detect that the Poisson bracket evolution $\dot{P} = Q_\gamma(P{\otimes{# Vert(\gamma)}})$ is trivial in the second Poisson cohomology, $Q_\gamma = [![ P, \vec{X}([\varrho],[a]) ]!]$, for the Nambu-determinant bi-vectors $P(\varrho,[a])$ on $\mathbb{R}3$. For the global Casimirs $\mathbf{a} = (a_1,\ldots,a_{d-2})$ and inverse density $\varrho$ on $\mathbb{R}d$, we analyse the combinatorics of their evolution induced by the Kontsevich graph flows, namely $\dot{\varrho} = \dot{\varrho}([\varrho], [\mathbf{a}])$ and $\dot{\mathbf{a}} = \dot{\mathbf{a}}([\varrho],[\mathbf{a}])$ with differential-polynomial right-hand sides. Besides the anticipated collapse of these formulas by using the Civita symbols (three for the tetrahedron $\gamma_3$ and five for the pentagon-wheel graph cocycle $\gamma_5$), as dictated by the behaviour $\varrho(\mathbf{x}') = \varrho(\mathbf{x}) \cdot \det | \partial \mathbf{x}' / \partial \mathbf{x} |$ of the inverse density $\varrho$ under reparametrizations $\mathbf{x} \rightleftarrows \mathbf{x}'$, we discover another, so far hidden discrete symmetry in the construction of these evolution equations.