Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logics of upsets of De Morgan lattices (2112.03884v1)

Published 7 Dec 2021 in math.LO

Abstract: We study logics determined by matrices consisting of a De~Morgan lattice with an upward closed set of designated values, such as the logic of non-falsity preservation in a given finite Boolean algebra and Shramko's logic of non-falsity preservation in the four-element subdirectly irreducible De Morgan lattice. The key tool in the study of these logics is the lattice-theoretic notion of an $n$-filter. We study the logics of all (complete, consistent, and classical) $n$-filters on De Morgan lattices, which are non-adjunctive generalizations of the four-valued logic of Belnap and Dunn (of the three-valued logics of Priest and Kleene, and of classical logic). We then show how to find a finite Hilbert-style axiomatization of any logic determined by a finite family of prime upsets of finite De Morgan lattices and a finite Gentzen-style axiomatization of any logic determined by a finite family of filters on finite De Morgan lattices. As an application, we axiomatize Shramko's logic of anything but falsehood.

Summary

We haven't generated a summary for this paper yet.