Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Friedrichs angle and alternating projections in Hilbert $C^{*}$-modules (2112.03822v2)

Published 7 Dec 2021 in math.OA and math.FA

Abstract: Let $B$ be a $C{*}$-algebra, $X$ a Hilbert $C{*}$-module over $B$ and $M,N\subset X$ a pair of complemented submodules. We prove the $C{*}$-module version of von Neumann's alternating projections theorem: the sequence $(P_{N}P_{M}){n}$ is Cauchy in the $$-strong module topology if and only if $M\cap N$ is the complement of $\overline{M{\perp}+N{\perp}}$. In this case, the $$-strong limit of $(P_{M}P_{N}){n}$ is the orthogonal projection onto $M\cap N$. We use this result and the local-global principle to show that the cosine of the Friedrichs angle $c(M,N)$ between any pair of complemented submodules $M,N\subset X$ is well-defined and that $c(M,N)<1$ if and only if $M\cap N$ is complemented and $M+N$ is closed.

Summary

We haven't generated a summary for this paper yet.