Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unifying Bayesian Approach for Sample Size Determination Using Design and Analysis Priors (2112.03509v1)

Published 7 Dec 2021 in stat.ME

Abstract: Power and sample size analysis comprises a critical component of clinical trial study design. There is an extensive collection of methods addressing this problem from diverse perspectives. The Bayesian paradigm, in particular, has attracted noticeable attention and includes different perspectives for sample size determination. Building upon a cost-effectiveness analysis undertaken by O'Hagan and Stevens (2001) with different priors in the design and analysis stage, we develop a general Bayesian framework for simulation-based sample size determination that can be easily implemented on modest computing architectures. We further qualify the need for different priors for the design and analysis stage. We work primarily in the context of conjugate Bayesian linear regression models, where we consider the situation with known and unknown variances. Throughout, we draw parallels with frequentist solutions, which arise as special cases, and alternate Bayesian approaches with an emphasis on how the numerical results from existing methods arise as special cases in our framework.

Summary

We haven't generated a summary for this paper yet.