Papers
Topics
Authors
Recent
Search
2000 character limit reached

Neural Energy Casimir Control for Port-Hamiltonian Systems

Published 6 Dec 2021 in eess.SY and cs.SY | (2112.03339v2)

Abstract: The energy Casimir method is an effective controller design approach to stabilize port-Hamiltonian systems at a desired equilibrium. However, its application relies on the availability of suitable Casimir and Lyapunov functions, whose computation are generally intractable. In this paper, we propose a neural network-based framework to learn these functions. We show how to achieve equilibrium assignment by adding suitable regularization terms in the training cost. We also propose a parameterization of Casimir functions for reducing the training complexity. Moreover, the distance between the equilibrium of the learned Lyapunov function and the desired equilibrium is analyzed, which indicates that for small suboptimality gaps, the distance decreases linearly with respect to the training loss. Our methods are backed up by simulations on a pendulum system.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.