Papers
Topics
Authors
Recent
2000 character limit reached

Morphing Rectangular Duals

Published 6 Dec 2021 in cs.CG and cs.DM | (2112.03040v2)

Abstract: A rectangular dual of a plane graph $G$ is a contact representations of $G$ by interior-disjoint axis-aligned rectangles such that (i) no four rectangles share a point and (ii) the union of all rectangles is a rectangle. A rectangular dual gives rise to a regular edge labeling (REL), which captures the orientations of the rectangle contacts. We study the problem of morphing between two rectangular duals of the same plane graph. If we require that, at any time throughout the morph, there is a rectangular dual, then a morph exists only if the two rectangular duals realize the same REL. Therefore, we allow intermediate contact representations of non-rectangular polygons of constant complexity. Given an $n$-vertex plane graph, we show how to compute in $O(n3)$ time a piecewise linear morph that consists of $O(n2)$ linear morphing steps.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.