Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GraphPrompt: Graph-Based Prompt Templates for Biomedical Synonym Prediction (2112.03002v2)

Published 13 Nov 2021 in cs.CL and cs.AI

Abstract: In the expansion of biomedical dataset, the same category may be labeled with different terms, thus being tedious and onerous to curate these terms. Therefore, automatically mapping synonymous terms onto the ontologies is desirable, which we name as biomedical synonym prediction task. Unlike biomedical concept normalization (BCN), no clues from context can be used to enhance synonym prediction, making it essential to extract graph features from ontology. We introduce an expert-curated dataset OBO-syn encompassing 70 different types of concepts and 2 million curated concept-term pairs for evaluating synonym prediction methods. We find BCN methods perform weakly on this task for not making full use of graph information. Therefore, we propose GraphPrompt, a prompt-based learning approach that creates prompt templates according to the graphs. GraphPrompt obtained 37.2\% and 28.5\% improvement on zero-shot and few-shot settings respectively, indicating the effectiveness of these graph-based prompt templates. We envision that our method GraphPrompt and OBO-syn dataset can be broadly applied to graph-based NLP tasks, and serve as the basis for analyzing diverse and accumulating biomedical data. All the data and codes are avalible at: https://github.com/HanwenXuTHU/GraphPrompt

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com