Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Influential Node Ranking in Complex Information Networks Using A Randomized Dynamics-Sensitive Approach (2112.02927v2)

Published 6 Dec 2021 in cs.SI and cs.DS

Abstract: Identifying the most influential nodes in information networks has been the focus of many research studies. This problem has crucial applications in various contexts, such as controlling the propagation of viruses or rumours in real-world networks. While existing approaches mostly rely on the structural properties of networks and generate static rankings, in this work we propose a novel method that is responsive to any change in the diffusion dynamics. The main idea is to approximate the influential ability (influentiality) of a node with the reachability of other nodes from that node in a set of random sub-graphs. To this end, several random sub-graphs are sampled from the original network and then a hyper-graph is created in which each sub-graph is represented with a hyper-edge. From a theoretical standpoint, one can argue that a factor of the degree of nodes in the hyper-graph approximates influentiality. From an empirical perspective, the proposed model not only achieves the highest correlation with the ground-truth ranking, but also the ranking generated by this method hits the highest level of uniqueness and uniformity. Theoretical and practical analysis of the running time of this method also confirms a competitive running time compared with state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.