Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Projected Newton-like Method for Precision Matrix Estimation under Total Positivity (2112.01939v4)

Published 3 Dec 2021 in cs.LG

Abstract: We study the problem of estimating precision matrices in Gaussian distributions that are multivariate totally positive of order two ($\mathrm{MTP}_2$). The precision matrix in such a distribution is an M-matrix. This problem can be formulated as a sign-constrained log-determinant program. Current algorithms are designed using the block coordinate descent method or the proximal point algorithm, which becomes computationally challenging in high-dimensional cases due to the requirement to solve numerous nonnegative quadratic programs or large-scale linear systems. To address this issue, we propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme. Our algorithm substantially reduces computational complexity, and its theoretical convergence is established. Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.