Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Homotopy (2112.01847v1)

Published 20 Sep 2021 in math.AT and cs.AI

Abstract: We characterize homotopical equivalences between causal DAG models, exploiting the close connections between partially ordered set representations of DAGs (posets) and finite Alexandroff topologies. Alexandroff spaces yield a directional topological space: the topology is defined by a unique minimal basis defined by an open set for each variable x, specified as the intersection of all open sets containing x. Alexandroff spaces induce a (reflexive, transitive) preorder. Alexandroff spaces satisfying the Kolmogorov T0 separation criterion, where open sets distinguish variables, converts the preordering into a partial ordering. Our approach broadly is to construct a topological representation of posets from data, and then use the poset representation to build a conventional DAG causal model. We illustrate our framework by showing how it unifies disparate algorithms and case studies proposed previously. Topology plays two key roles in causal discovery. First, topological separability constraints on datasets have been used in several previous approaches to infer causal structure from observations and interventions. Second, a diverse range ofgraphical models used to represent causal structures can be represented in a unified way in terms of a topological representation of the induced poset structure. We show that the homotopy theory of Alexandroff spaces can be exploited to significantly efficiently reduce the number of possible DAG structures, reducing the search space by several orders of magnitude.

Citations (5)

Summary

We haven't generated a summary for this paper yet.