Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient estimates for a weighted parabolic equation under geometric flow (2112.01271v1)

Published 30 Nov 2021 in math.DG and math.AP

Abstract: Let $(M{n},g,e{-\phi}dv)$ be a weighted Riemannian manifold evolving by geometric flow $\frac{\partial g}{\partial t}=2h(t),\,\,\,\frac{\partial \phi}{\partial t}=\Delta \phi$. In this paper, we obtain a series of space-time gradient estimates for positive solutions of a parabolic partial equation $$(\Delta_{\phi}-\partial_{t})u(x,t)=q(x,t)u{a+1}(x,t)+p(x,t)A(u(x,t))),\,\,\,\,(x,t)\in M\times[0,T]$$ on a weighted Riemannian manifold under geometric flow. By integrating the gradient estimates, we find the corresponding Harnack inequalities.

Summary

We haven't generated a summary for this paper yet.