Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wide-Sense Stationarity in Generalized Graph Signal Processing (2112.01127v2)

Published 2 Dec 2021 in eess.SP

Abstract: We consider statistical graph signal processing (GSP) in a generalized framework where each vertex of a graph is associated with an element from a Hilbert space. This general model encompasses various signals such as the traditional scalar-valued graph signal, multichannel graph signal, and discrete- and continuous-time graph signals, allowing us to build a unified theory of graph random processes. We introduce the notion of joint wide-sense stationarity in this generalized GSP framework, which allows us to characterize a graph random process as a combination of uncorrelated oscillation modes across both the vertex and Hilbert space domains. We elucidate the relationship between the notions of wide-sense stationarity in different domains, and derive the Wiener filters for denoising and signal completion under this framework. Numerical experiments on both real and synthetic datasets demonstrate the utility of our generalized approach in achieving better estimation performance compared to traditional GSP or the time-vertex framework.

Summary

We haven't generated a summary for this paper yet.