Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-Term Recurrent Convolutional Network-based Inertia Estimation using Ambient Measurements (2112.00926v1)

Published 2 Dec 2021 in eess.SY and cs.SY

Abstract: Conventional synchronous machines are gradually replaced by converter-based renewable resources. As a result, synchronous inertia, an important time-varying quantity, has substantially more impact on modern power systems stability. The increasing integration of renewable energy resources imports different dynamics into traditional power systems; therefore, the estimation of system inertia using mathematical model becomes more difficult. In this paper, we propose a novel learning-assisted inertia estimation model based on long-term recurrent convolutional network (LRCN) that uses system wide frequency and phase voltage measurements. The proposed approach uses a non-intrusive probing signal to perturb the system and collects ambient measurements with phasor measurement units (PMU) to train the proposed LRCN model. Case studies are conducted on the IEEE 24-bus system. Under a signal-to-noise ratio (SNR) of 60dB condition, the proposed LRCN based inertia estimation model achieves an accuracy of 97.56% with a mean squared error (MSE) of 0.0552. Furthermore, with a low SNR of 45dB, the proposed learning-assisted inertia estimation model is still able to achieve a high accuracy of 93.07%.

Citations (16)

Summary

We haven't generated a summary for this paper yet.